Code.No: 37152

Max.Marks:80

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD IV .B.TECH – I SEM REGULAR EXAMINATIONS JANUARY- 2010 STRUCTURAL ANALYSIS AND DETAILED DESIGN (AERONAUTICAL ENGINEERING)

Time: 3hours

Answer any FIVE questions All questions carry equal marks

a) What are the types for landing gear.
b) Write the design procedure for single wheel landing gear with neat sketches. [16]

2. The thin- walled single cell beam has been idealized into combination of direct stress carrying booms and shear stressesaly carrying walls. If the section supports a vertical shear bond of 10KN acting vertical plane through booms 3 and 6. Calculate the distribution of shear flow around the section. Boom areas $B_1 = B_8 = 200mm^2$, $B_2 = B_7 = 250mm^2$, $B_3 = B_6 = 400mm^2$, $B_4 = B_5 = 100mm^2$ as shown in figure. [16]

- 3. a) Explain the construction of fuselage structure.b) Explain with neat sketches skin instability, panel instability and general instability. [6+10]
- 4. Monocoque cylinder radius r = 1250mm, thickness t = 1.25mm, length L = 1875mm, E = 74 KN/mm². The cylinder subjected to an axial compressive bond of 225KN and internal pressure of 0.3447 N\mm². What is the margin of safety under this combined load system with 90% Probability and 95% confidence level (for thin interval $F_{ccr} / E = 0.000121$) take $\mu = 0.3$, $\eta = 1.0$, $K_c = 280$. [16]
- 5. Explain the phenomenon of distribution of concentrated loads on thin webs in aircraft structure. [16]
- 6. Find the shear centre for the wing section shown in figure. Web 3 has a thickness 1.6mm, and the other webs have thickness of 1mm. Assume G is constant for all cross- sections. The cross section is symmetrical about a horizontal. [16]

- 7.a) Explain in detail the shear forces in tapered webs.
- b) Derive the relationships for shear force at any section of a tapered diagram tension field beam, subjected to a load at its free end perpendicular to the axis in the plane of the beam. [8+8]
- 8. A steel ship deck plate G 2.5mm thick, 10m wide and 20m long (in the tensile stress direction). It is loaded with a normal tensile stress of 50 MPa. It is operated below its ductile to brittle transition temperature with K_{IC} equal to 28.3Mpa \sqrt{m} . If a 65mm long central hole transverse crack is present, estimate tensile stress at which catastrophic failure will occur. Compare thin stress with the yield strength of 240 Mpa for the steel. [16]
